
Pre-print version.To appear in PMLR, Volume 298, Machine Learning for Healthcare, 2025. 1–31

Iterative Learning of Computable Phenotypes for Treatment
Resistant Hypertension using Large Language Models

Guilherme Seidyo Imai Aldeia guilherme.aldeia@ufabc.edu.br
Federal University of ABC, Santo André, São Paulo, Brazil
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Abstract

Large language models (LLMs) have demonstrated remarkable capabilities for medical
question answering and programming, but their potential for generating interpretable com-
putable phenotypes (CPs) is under-explored. In this work, we investigate whether LLMs
can generate accurate and concise CPs for six clinical phenotypes of varying complexity,
which could be leveraged to enable scalable clinical decision support to improve care for
patients with hypertension. In addition to evaluating zero-short performance, we propose
and test a synthesize, execute, debug, instruct strategy that uses LLMs to generate and it-
eratively refine CPs using data-driven feedback. Our results show that LLMs, coupled with
iterative learning, can generate interpretable and reasonably accurate programs that ap-
proach the performance of state-of-the-art ML methods while requiring significantly fewer
training examples.

1. Introduction

Recent advances in neural network architectures, particularly transformers (Vaswani et al.,
2017), have led to groundbreaking innovations in large language models (LLM), enabling
commercial products such as ChatGPT (OpenAI, 2024) and Claude (Anthropic, 2024).
As a result, LLMs have been widely applied across various domains, demonstrating their
effectiveness in solving domain-specific problems, including in coding (Jiang et al., 2024),
law (Lai et al., 2024), and healthcare (Zhou et al., 2023; Thirunavukarasu et al., 2023).

Given the complexity of LLMs and other artificial intelligence (AI) models, the robust-
ness and intelligibility of their responses requires scrutiny. The interpretability of the rec-
ommendations of AI tools is an important factor considered by regulatory agencies, such as
the US FDA (Food and Administration, 2022) and the European AI Office (Goodman and
Flaxman, 2017), in assessing the risks of deploying AI-targeted decision support in health-
care. Post-hoc explanation methods (Lundberg and Lee, 2017), including recent methods
applying representation engineering (Zou et al., 2023) and sparse auto-encoders (NG et al.,
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2011), are fundamentally limited in that they cannot fully explain models’ behavior (Ghas-
semi et al., 2021; Rudin, 2019). Additionally, LLM models are prone to hallucinations (i.e.,
generating fabricated information) (Ouyang et al., 2022; Singh et al., 2024), and can show
bias across demographic subgroups (Chen et al., 2024).

While previous research has explored LLMs for natural language processing (NLP) tasks,
an overlooked question is whether they can generate useful computable phenotypes (CPs)
(Banda et al., 2018). A CP is an algorithmic construct that identifies observable traits
from patient electronic health record data (He et al., 2023), enabling the identification of
patients with a shared condition of interest (Tasker, 2017). CPs are desirable for decision
support because they are machine-executable and can also be both intuitively interpretable
to clinicians and can precisely identify specific patient populations (Mo et al., 2015). How-
ever, conventional manual approaches to the construction of CPs require considerable time
and effort from clinical experts and data analysts, and as such, they do not scale well
across phenotypes and struggle to adapt to differences across clinical practices or changes
over time. In fact, He et al. (2023) reviewed CP generation literature, finding that 40% of
the CP does not use ML — and when CP generation relies on ML, authors often choose
models such as SVM and random forests, and perform feature selection manually, by choos-
ing features related to previous studies, or guidelines, but rarely use automated generation
processes. As LLMs are trained on medical literature and structured datasets (Liu et al.,
2024) and perform well on medical Q&A tasks, they likely encode sufficient information
regarding the relationships among clinical concepts to connect clinical concepts provided in
prompts to available EHR data elements, enabling the composition of CPs. As opposed to
the direct usage of LLMs for making clinical predictions (Jiang et al., 2023), using LLMs
to compose CPs may yield efficient, standalone models that can be transparently assessed
for performance and intelligibility.

Computable phenotyping is inherently a program synthesis problem, for which the goal
is to solve a computer programming problem autonomously. The task of generating CPs as
a program synthesis problem was studied using supervised machine learning (ML) methods,
such as symbolic regression (SR), which simultaneously optimizes the model structure and
parameters to produce simple and interpretable models (La Cava et al., 2023). Recent work
has shown the potential for LLMs to tackle general program synthesis (Liventsev et al.,
2023), especially when used as components in an iterative process including the steps of
synthesizing, executing, and debugging (Gupta et al., 2020).

As a new technology, it is largely unknown how to best apply current LLMs for CP
development. To that end, this paper aims to address the following research questions:

1. Can LLMs generate clinically meaningful CPs for hypertension-related conditions? If
so, how much detail does the prompt require?

2. How accurate and concise are LLM-generated models compared to those produced by
interpretable ML methods?

3. Can an iterative refinement improve LLM-generated CPs?

We investigate the capability of LLMs to generate CPs for three phenotypes of increas-
ing complexity: hypertension (HTN), hypertension with unexplained hypokalemia (HTN-
HypoK), and apparent treatment-resistant hypertension (aTRH). Because LLMs are trained
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on large corpuses of code, we decide to explore their ability to compose CPs as simple Python
programs. Our approach differs from other CP generation ones by leveraging natural lan-
guage descriptions of the phenotypes to automatically guide CP construction, using less
data to perform iterative optimization. We acknowledge LLMs are speculative, but as an
intermediate step, we can focus on the final CP for using in clinical practice.

We targeted hypertension and these sub-phenotypes because of the substantial oppor-
tunity for leveraging such CPs for clinical decision support. One critical need is to improve
screening for primary aldosteronism, which is recommended for patients with HTN-HypoK
or aTRH by specialty society guidelines (Funder et al., 2016). Primary aldosteronism
causes cardiovascular disease at rates that are even higher than other causes of hyperten-
sion (Milliez et al., 2005). It is thought to affect up to ≈ 1% of US adults and is treatable,
and sometimes curable, when identified but it is only diagnosed in fewer than 10% of af-
fected patients (Käyser et al., 2016; Funder, 2016; Cohen et al., 2020; Reincke et al., 2012;
Lin et al., 2012; Catena et al., 2007). Pilot studies have demonstrated that targeted deci-
sion support can increase screening of eligible patients from 2% to at least 16% (Passman
et al., 2025), but it is difficult to manually adapt manually curated CPs from one clinical
practice to another. By developing methodologies for automatically generating CPs, we can
create a largely automated pipeline for adapting CPs across different localities or cohorts
and adapting them over time to maintain performance.

We evaluate various aspects of CP generation, including: i) different LLMs, ii) different
degrees of detail in the specification of the desired CP, iii) the number of features provided
to the LLM, and iv) an iterative synthesize, execute, debug, and instruct (SEDI) strategy,
wherein misclassified patients are provided as feedback to the LLM to refine the CP.

Our experiments are conducted using pre-processed EHR data. We compare LLM-
generated models to interpretable ML methods, including decision trees, logistic regression,
and a symbolic regression framework called FEAT (La Cava et al., 2019).

Our results showed that the LLMs generated concise CPs for all phenotypes analyzed.
As expected, LLM-generated CPs were more accurate when the prompt included a more
detailed description of the desired phenotype. The SEDI strategy improved performance,
even when prompts did not include detailed phenotype definitions. To some extent, GPT-
based models under-performed relative to the best supervised ML approaches in terms of
cross-validated area under the precision-recall curve (AUPRC). However, the performance
of the best LLM-generated CP (gpt-4o+SEDI) exhibited similar AUPRC and AUROC to
a recently published, ML-based CP for predicting aTRH (La Cava et al., 2023) in held-out
testing data. When performing parameter optimization on the final model, we could further
increase its AUPRC performance in held-out testing data, outperforming the ML-based CP.

Generalizable Insights about Machine Learning in the Context of Healthcare

Computable phenotypes are useful tools for clinicians whose development traditionally de-
mands a large amount of clinician time spent in chart review and model refinement. The
expensive nature of the gold-standard labeling process for this task presents a general chal-
lenge for ML solutions. Our results suggest that LLMs can be leveraged to automate both
the generation of computable phenotypes and the review and refinement process using a
smaller amount of expert-curated samples than is typically required to train ML models.
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We further find that, by using LLMs to generate CPs rather than black-box predictions,
the model behavior becomes interpretable.

2. Related work

In healthcare, LLMs have been employed as NLP tools for tasks such as extracting con-
cepts from clinical notes for postpartum hemorrhage patients without task-specific training
(zero-shot) (Alsentzer et al., 2023), making meaningful inferences from physiological and
behavioral time-series data by providing a few relevant examples in the prompt (few-shot)
(Liu et al., 2023), and extracting logical conditions of inclusion/exclusion for phenotypes
using concept codes (Tekumalla and Banda, 2024). LLMs are trained on vast amounts of
data (Hoffmann et al., 2022), and can learn complex linguistic structures and rich represen-
tations of real-world information, thereby achieving remarkable performance in zero-shot
or few-shot tasks. Jiang et al. (2023) described LLMs as “all-purpose prediction engines”
for health systems due to their ability to perform well across five seemingly disparate tasks
(30-day all-cause readmission prediction, in-hospital mortality prediction, comorbidity in-
dex prediction, length of stay prediction, and insurance denial prediction). The performance
of LLMs on medical exam question-answering has become a de facto benchmark to track
AI model advances (Jin et al., 2020; Singhal et al., 2023), although such benchmarking has
recently been called into question given its specious relationship to usefulness in real-world
tasks (Raji et al., 2025).

More detailed investigations into specific clinical applications of LLMs for EHR data,
reviewed by Wornow et al. (2023), suggest that most meaningful clinical applications of
LLMs, outside of high-level prediction tasks, are under-explored.

LLMs were recently evaluated for their ability to draft CPs in the form of SQL queries
for three phenotypes: type 2 diabetes mellitus, dementia, and hypothyroidism (Yan et al.,
2024). Another promising evaluation was done by Tekumalla and Banda (2024) of usefulness
and reliability in retrieving phenotype concept codes was done by comparing LLM-generated
phenotypes with OHDSI phenotype library (Banda et al., 2017) and HDRUK phenotype
library (HRDUK Phenotype Library, 2024) by domain-experts.

Beyond clinical applications, LLMs have also been employed to generate concepts for
discriminating input texts, then aggregating the concept scores into a white-box prediction
model (Ludan et al., 2024). With a focus on medical calculations, MedCalc-Bench (Khan-
dekar et al., 2024) evaluated the task of predicting common medical scores based on textual
descriptions of patient records.

While these studies show LLMs in healthcare applications and computable phenotyp-
ing, to the best of our knowledge, no prior work directly aligns with our approach. Exist-
ing research has primarily focused on using LLMs for prediction tasks, medical question-
answering, and phenotype retrieval, largely in the zero-shot context. In contrast, our study
provides a detailed investigation into generating CPs with LLMs, including through auto-
mated refinement, in comparison to expert and ML-based solutions.
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3. Methods

LLMs generate text by predicting the next token in a sequence, using as context the previ-
ous tokens. A token is a fundamental unit of text that can be a word or sub-word, encoded
in a numerical embedding. The novelty introduced by transformers is the efficient process-
ing of long-range token-token dependencies. By default, LLMs select the most probable
next token given the specified preceding context. Some parameters, such as temperature
(which perturbs the probability space when generating the next token) (Grubisic et al.,
2024) or nucleus sampling (which restricts token choices to within a cumulative probability
threshold) (Ravfogel et al., 2023) adjust the variability in selection of the next token.

To enhance their ability to follow structured instructions, LLMs can be fine-tuned to
the instruct task (Wei et al., 2022), using datasets containing instruction-response pairs. In
this setup, prompts are categorized into system prompts (guiding overall model behavior)
and user prompts (task-related queries). Instruct models have no memory, so the entire
conversation is used as context when generating a new response.

3.1. LLM-Guided CP Generation

Fig. 1 illustrates our approach for leveraging LLMs to construct CPs. We explore three
target phenotypes, specify these phenotypes in the prompt using two levels of detail, and
provide either the full set of features or a smaller, pre-selected set of features.

We explore two modes for prompt composition:

Zero-shot prompts The LLM generates a Python function that predicts phenotype
probabilities based on the available features without receiving feedback.

SEDI prompts The process follows a synthesize-execute-debug-instruct (SEDI) loop
(Gupta et al., 2020) iteratively receiving feedback regarding the CP’s performance on train-
ing dataset. If the CP fails to execute, the LLM receives a message containing the error
traceback (Debug). If the CP is successful, the LLM receives performance metrics, as well
as example false positive (FP) and example false negative (FN) cases, and is instructed
to refine its phenotype definition to improve the program’s performance (Instruct). When
providing FP and FN cases, information about the features being currently used by the
phenotype, and additionally randomly sampled features are provided. We set to 10 false
positive and 10 false negative examples per iteration, capped at 10 iterations — using at
most 200 samples. In practice, samples may be resampled, and some iterations may contain
fewer false positive or false negative examples, with 200 serving as a strict upper bound.

The SEDI prompts relies on giving examples for the model to perform small adjust-
ments with supervised feedback, as including examples of inputs and desired outputs can
improve overall performance (Murr et al., 2023). Our integration of the SEDI strategy
significantly reduces reliance on labeled data compared to traditional supervised machine
learning methods. In our approach, we retain the history of all models generated during
the iterative phase, and at the end select the model that performs the best on training data
as the final CP.

The problem definition prompts are presented below. The additional SEDI prompts are
detailed in Appendix A.
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Generate problem
definition prompt

Desired phenotype
HTN,
HTN-hk,
aTRH

Phenotype details
No description,
Phenotype definition

Set of features
All features,
Expert features

LLM

Set fixed parameters
(e.g. temperature)

Save to
a file

Parse and extract
the best CP

Training data

Evaluate metrics

Select FP and
FN examples

Generate feedback
prompt

Synthesize

Execute Instruct
SEDI

Zero-shot

Debug

NY
Check if code

executes
Generate traceback

prompt

Test data

Execute
CP

Save predictions

Apply itConfigure Generate CP

Figure 1: Overview of our proposed method for generating computable phenotypes with
LLMs. A prompt is constructed by selecting a phenotype, specifying the level of description
detail, and choosing the set of available features. In the zero-shot approach, the LLM
generates a Python function to estimate phenotype probability using the listed features.
With the SEDI strategy, a loop performs the following iteration: the CP is applied to the
training dataset and the LLM is informed regarding the overall performance metrics and
provided with false positive (FP) and false negative (FN) examples. Finally, after saving
the CP to a file, it can be used to predict probabilities for held-out data as a standalone
function.

System prompt You are an AI assistant that generates Python code based on a plain-
text description of a function’s purpose. You will receive a statement describing what the
function should do. Your response must contain only a Python function, with no comments
or explanations, that strictly follows the given description.

User prompt Please create a Python function named ‘predict hypertension’ that takes
a pandas DataFrame named ‘df’ as input. The function should assess whether each patient
(represented as rows) has evidence of <phenotype description>. The function must return
an array of floats representing the probability for each row. The available columns and their
meanings are provided as key value pairs in the following dictionary: ‘<variable dict>’.
You may only use the features whose names appear in this dictionary.

4. Cohort

Our experiments were conducted using EHR data from 1200 patients who received longitu-
dinal primary care in the University of Pennsylvania Healthcare System (UPHS) and had
chart review. The study data was previously reported in La Cava et al. (2023). Subject
inclusion criteria were: (a) at least five outpatient visits in at least three separate years be-
tween 2007 and 2017, (b) at least two encounters at a single primary care practice sites, and
(c) age 18 years or older. Table 1 describes the population comprising the data, including
distribution of the three diagnoses we study here.

The data contains a total of 331 features extracted from EHR data. The features include
demographic and clinical features such as age, sex, race, hospital proximity, weight, BMI,

6



Table 1: Demographic and diagnosis statistics of the study population. Values are counts
(%) unless otherwise noted.

Grouped by aTRH

Overall False True

n 1199 1023 176

Age, mean (SD) 57.2 (18.5) 55.0 (18.2) 70.4 (14.0)

Race Black 338 (28.2) 251 (24.5) 87 (49.4)

Other 108 (9.0) 100 (9.8) 8 (4.5)

White 753 (62.8) 672 (65.7) 81 (46.0)

Sex F 737 (61.5) 631 (61.7) 106 (60.2)

M 462 (38.5) 392 (38.3) 70 (39.8)

HTN False 591 (49.3) 591 (57.8) 0 (0)

True 608 (50.7) 432 (42.2) 176 (100)

HTN
HypoK

False 1027 (85.7) 924 (90.3) 103 (58.5)

True 172 (14.3) 99 (9.7) 73 (41.5)

blood pressure, occurrences of elevated BP (systolc/diastolic ≥ 140/90 mmHg) during en-
counters. Longitudinal features were aggregated as minimum, maximum, median, standard
deviation, and skewness.

Laboratory results from 34 common tests (e.g., metabolic panel, blood count, lipids,
TSH, HbA1c) were aggregated using quartiles and medians. Diagnosis codes for hyperten-
sion and related comorbidities were summarized as annual medians and totals. Medication
prescriptions were summarized as the number of days prescribed for each antihypertensive
class and the count of encounters while prescribed 1, 2, 3, or 4 or more anti-hypertensive
medications, described as sum, median, standard deviation, and skewness. Clinical notes
were scanned for mentions of hypertension using regular expressions.

Features with physiologically implausible values, low variance (< 0.05), or sparse data
(< 5% non-zero counts) were excluded. Missing values were imputed using the median. A
detailed description is available in Appendix B.

4.1. Target computable phenotypes

Three clinical phenotypes were targeted, in order of increasing complexity: hypertension
(HTN), hypertension with hypokalemia (HTN-HypoK), and apparent treatment-resistant
hypertension (aTRH). For each phenotype, two labeling methods were used: “diagnosis”
(Dx) based on expert chart reviews and “heuristic”, an expert-designed clinical protocol
refined iteratively using training data to work as a simpler version of the phenotypic labels.
Heuristics were initially developed on the basis of clinical data expertise and iteratively
refined based on evaluation in subsets of the training data in this study. By evaluating per-
formance on both heuristics and diagnosis labels, we can assess how well the LLM captures
simpler heuristics and, subsequently, how well it represents more complex phenotypes.

The simple HTN heuristic consisted of the presence of two or more diagnosis codes for
hypertension1. For HTN-HypoK, the heuristic was the presence of the HTN heuristic plus

1. The data were recorded, pre-processed, and labeled, under the ICD-9 classification, which was in use at
the time.
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two of one of the following: diagnosis codes for hypokalemia, outpatient encounters with
low blood potassium results, or ambulatory prescriptions for an oral potassium supplement.
For aTRH, we refined a previously reported CP to label patients. It consisted of inclusion
criteria: (a) with documentation of at least two outpatient encounters with elevated blood
pressure while on antihypertensive medications from 3 distinct classes or (b) prescribed four
or more distinct classes of antihypertensive medications. The exclusion criteria for aTRH
included diagnosis codes for heart failure, heart transplant, or moderate to severe chronic
kidney disease prior to meeting the above inclusion criteria.

For diagnosis labels ascertained by chart review, a study physician reviewed clinical
charts and classified subjects with respect to three phenotypes. The classification was
based on JNC7 Guidelines on Prevention, Detection, Evaluation, and Treatment of High
Blood Pressure (Chobanian et al., 2003).

4.2. Prompt construction with phenotype and data description

We start by describing our definitions for each hypertension phenotype, used when con-
structing prompts with detailed phenotype descriptions. They were designed to provide
precise context to the model, when cross-referenced with the provided dictionary for avail-
able EHR features.

Hypertension: 2 or more hypertension Dx codes;

Hypertension with hypokalemia: 2 or more hypertension Dx codes and either 2 or more low
potassium test results, 2 or more potassium supplementation prescriptions, or 2 or more
hypokalemia diagnosis codes;

Treatment resistant hypertension: 2 or more high blood pressure measurements while pre-
scribed 3 or more hypertension medications or 2 or more encounters while prescribed 4 or
more hypertension medications

We identified a small feature set sufficient for either precisely building or approximating
the heuristics definitions, described in Table 2. To ensure the LLMs appropriately interpret
the features’ derivations, we provide precise feature descriptions. When not using the subset
of features from Table 2, then the model is prompted with all features and their respective
descriptions, potentially allowing it to capture more complex dependencies but creating a
much larger prompt.

By using the prompt presented in Section 3 under “User prompt”, we replace <phenotype>
by the description. A simple prompt will contain only the name of the phenotype (i.e. “hy-
pertension”), while the rich prompt is formatted as follows: <phenotype>, which we will
define as <description of the heuristic>.

5. Experiments

We evaluated LLMs’ capabilities in generating CPs for hypertension and subphenotypes
thereof, and evaluated their performance on both the expert-defined heuristics and chart-
reviewed patient diagnoses. The biggest knowledge gaps include understanding how prompts
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Table 2: The “expert” features used to define the phenotypes in the expert-curated heuris-
tics. Under the ‘expert features’ experiment setting, rather than receiving a data dictionary
of all available features (n=311), the LLM receives this focused set.

Feature name Feature description

mean/median systolic Mean/median of systolic blood pressure (SBP) measured
mean/median diastolic Mean/median of diastolic blood pressure (DBP) measured

bp n Total number of blood pressure (BP) measurements

high bp n
Number of high blood pressure measurements
(SBP >= 140 or DBP >= 90)

high BP during htn meds X
Number of high BP measurements (SBP >=140 or DBP >=90)
while prescribed X hypertension medications (X=1, 2, 3)

high BP during htn meds 4 plus
Number of high BP measurements (SBP >=140 or DBP >=90)
while prescribed four or more hypertension medications

sum enc during htn meds 4 plus Total encounters while prescribed 4 or more hypertension medications
low K N Total number of low potassium test results
test K N Total number of potassium test results

Med Potassium N Total number of potassium supplement prescriptions
Dx HypoK N Total number of hypokalemia diagnoses

re htn sum Sum of regex counts for hypertension in clinical notes

Table 3: LLM models considered in our experiments, accessed via the OpenAI API.

Model Checkpoint date (yy-mm-dd) Knowledge cut-off date (yy-mm) Max tokens

gpt-3.5-turbo 24/04/09 21/10 16K
gpt-4o-mini 24/7/18 23/10 128K
gpt-4o 24/08/06 23/10 128K

influence phenotype generation, whether adding more features improves accuracy or un-
necessarily increases complexity, and how LLM-composition compares with existing ML
methods for the same task.

In our first set of experiments, we perform an extensive evaluation of different settings
for the LLMs with each phenotype. We investigate how different LLM models respond to
prompt richness and feature quantity, and whether the SEDI loop improves performance
over ten iterations. Table 3 reports the LLMs evaluated in this study. We set the tem-
perature to 0.5 and nucleus sampling (top-p) to 1.0, based on preliminary experiments, to
allow some variability while keeping the generated programs concise.

Our second set of experiments focuses on comparing the best setting for prompt richness
and feature set with other interpretable ML methods, namely decision trees (DT), logistic
regression with L1 regularization (LR L1), random forests (RF), and a symbolic regression
algorithm named Feature Engineering Automation Tool (FEAT) (La Cava et al., 2019).
Although random forests are not inherently interpretable, they are powerful models and
serve as a competitive accuracy benchmark for this task.

Methods were compared using 5-fold cross-validation (CV) over 75% (n=899) of the
study subjects. Each fold was tested with ten different random seeds, as some methods
(e.g., RF, LLMs, FEAT) are stochastic. Non-LLM based method underwent additional
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hyperparameter tuning on each fold (i.e., nested CV), using the hyperparameters in Table 6
in Appendix C.

We first compared the cross-validation performance across all 50 runs per phenotype
and modeling strategy. Next, we focused on the most complex phenotype, aTRH, and
selected from these runs the LLM-based CP with the best cross-validation performance
and evaluated it on a held-out test set of 300 patients. The selected CPs went through an
additional parameter optimization step aiming to maximize AUPRC, and the tuned version
was also included in the comparisons.

Metrics To evaluate the performance of the LLM-generated CPs and ML models, we
report the area under the precision-recall curve (AUPRC) and the area under the receiver
operating characteristic curve (AUROC).

In addition to manually interpreting a small set of generated CPs, we measured the size
of each model as a scalable proxy for potential interpretability. In short, we approximate
this model complexity by counting the number of computational components each model
contains. DT model size is measured as the total number of nodes of the tree. RF is
measured as the sum of number of nodes for every tree. LR L1 is measured by the number of
features and arithmetic operations needed to build a linear combination of features with non-
zero coefficients. FEAT is measured as the number of operations, constants, and features
used in the mathematical function. To estimate the size of LLM-generated CPs, we first
load the generated function into Python’s abstract syntax tree library (ast) and then count
the number of nodes in progam tree. Although imperfect, this size comparison gives us
a valuable, if rough, sense of the potential interpretability of models returned by different
methods.

6. Results

Fig. 2 reports the cross-validated AUPRC for the settings study. We compare the perfor-
mance of each LLM (rows) in generating CPs for the six different phenotypes (columns). For
each plot on the grid, we sort in the y axis each combination of the level of detail provided
for the phenotype and the provided feature set, in order of increasing design complexity. For
each combination, the bars represent the different prompting strategies. A boxplot version
of this result is presented in Appendix D to better visualize the distribution.

In subsequent comparisons to other ML methods, for simplicity, we compare to LLM
results using the SEDI strategy, as it appeared on average to be associated with the best
overall performance for all LLM models. As a proxy for interpretability, we measure and
plot the model sizes against the cross-validation AUPRC using the best llm settings and
the SEDI strategy for all phenotypes in Fig. 3, also including the models found by other
ML methods. In addition, Appendix E compares the distribution of validation AUPRC for
aTRH across different LLM-generated CPs and interpretable machine learning methods.

Finally, we compared the performance of the best GPT-generated CP for aTRH to the
FEAT CP reported in prior work, using 300 held-out test subjects. A single final model
was selected for gpt-4o variants as follows: the best GPT-generated CPs were identified by
selecting, from all CPs generated across cross-validation folds and iterations, the one with
the highest performance.
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Figure 2: Average AUPRC on each held-out fold of the LLM-generated CPs across different
prompting approaches. Prompts were varied to exclude/include detailed descriptions of the
phenotype (i.e., Simple, Rich) and include the entire set of features or only expert-selected
features used in the heuristic (i.e., all features, expert features). Whiskers depict the 95%
confidence interval across different seeds.

We compare the performance of FEAT and gpt-4o-generated models at different levels
of prompt richness and expert feature inclusion for aTRH in Table 4. The validation columns
reports the cross-validation performance which also corresponds to the maximum observed
performance on the train-validation data. The held-out column reports the performance on
exclusive data with different prevalence. Additional parameter tuning was performed using
a black-box optimization framework on the LLM-generated function generated with the
SEDI strategy (See details in Appendix F), as it iteratively refines the program, to further
assess whether the generated CPs holds reasonable parameters.

The gpt-4o+SEDI model with rich prompt and expert features (Fig. 4) achieves an
average AUPRC of 0.79 and an AUROC of 0.90, with overlapping confidence intervals when
comparing to FEAT. The parameter optimization appeared to increase the gpt-4o+SEDI

final model’s performance to AUPRC of 0.85 and AUROC of 0.94. The results show that
the FEAT-trained model (Fig. 5) achieves an AUPRC of 0.80 and an AUROC of 0.94;
overlapping confidence intervals suggest the gpt-4o methods are as good as the prior CP
on this cohort. We also observe improvements on AUPRC but not on AUROC between
gpt-4o+SEDI without parameter optimization and it’s correspondent zero-shot setting,
with increase from 0.61 to 0.86 AUPRC with simple prompt and all features, and from 0.71
to 0.79 with rich prompt and expert features. Appendix G presents the initial versions of
the program, illustrating how the iterative SEDI strategy incrementally refined the model
based on feedback.
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Figure 3: Trade-off between validation AUPRC (higher is better) and model size (smaller
is better) for all phenotypes, using the SEDI strategy, rich prompts, and expert features.
The error bars denote the 95% confidence intervals.

Table 4: Comparison between FEAT and best LLM-generated models from cross-validation
for different levels of prompt richness and expert features for the most complex phenotype
aTRH Dx. We performed parameter tuning of the final models with a black-box opti-
mization framework. Values in parentheses represent 90% confidence intervals. Highlight
denotes the best-performing method across all the rows and those whose confidence inter-
vals overlap with it. Validation partition prevalence is 0.11. Held-out partition prevalence
is 0.24.

Model Strategy
Rich

prompt
Expert
features

Param.
tuning

Model
size

Held-out test

AUROC AUPRC

FEAT - - ✗ ✓ 44 0.94 (0.91− 0.96) 0.80 (0.71− 0.87)

RF - - ✗ - 5539 0.96 (0.95− 0.98) 0.90 (0.84− 0.94)

GPT-4o

Zero-Shot
✗ ✗ ✗ 68 0.86 (0.86− 0.86) 0.61 (0.61− 0.61)
✓ ✓ ✗ 8 0.93 (0.90− 0.95) 0.71 (0.64− 0.79)

SEDI

✗ ✗ ✗ 57 0.95 (0.93− 0.97) 0.86 (0.79− 0.91)
✓ ✓ ✗ 59 0.95 (0.92− 0.96) 0.79 (0.72− 0.87)

✗ ✗ ✓ 57 0.90 (0.86− 0.92) 0.74 (0.65− 0.82)
✓ ✓ ✓ 59 0.94 (0.91− 0.96) 0.85 (0.78− 0.91)
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LLM-generated aTRH computable
phenotype

def predict_aTRH (* features):
prob = 0.0
if high_BP_during_htn_meds_3 >= 2:

prob += 0.31 # 0.4
if sum_enc_during_htn_meds_4_plus

←↩>=2:
prob += 0.28 # 0.4

if mean_diastolic > 80:
prob += 0.07 # 0.1

if mean_systolic > 140:
prob += 0.12 # 0.1

if high_BP_during_htn_meds_2 > 5:
prob += -0.16 # 0.1

if high_BP_during_htn_meds_3 > 5:
prob += 0.02 # 0.1

prob = min(1.0, prob)

if Med_Potassium_N > 0 and
←↩Dx_HypoK_N > 0:

prob *= 0.45 # 0.5

if mean_systolic <130 and
←↩mean_diastolic <75:

prob *= 0.77 # 0.5

return prob

Figure 4: Final aTRH CP generated by
gpt-4o+SEDI strategy with expert features
and rich prompts. Constants were obtained
using a parameter optimizer. Original con-
stants are shown as comments. Held-out per-
formance AUPRC of 0.85 and AUROC of
0.94.

FEAT aTRH computable phenotype

def predict_aTHR_FEAT (* features):
acc = 0
if sum_enc_during_htn_meds_3 > 1:

acc += 1.33
if median_enc_during_htn_meds_4_plus

←↩ >1.25:
acc += 0.49

if mean_systolic >= 128.64:
acc += 0.95

if max_CALCIUM >= 10.15:
acc += 0.4

if re_htn_spec_sum > 40:
acc += 0.42

acc += -0.52*
←↩sd_enc_during_htn_meds_2

offset = -3.96

logit = 1/(1+ exp(-(offset+acc)))

return logit

Figure 5: Final aTRH CP generated by
FEAT, adapted to Python from Figure 5b of
La Cava et al. (2023). Held-out performance
AUPRC of 0.80 and AUROC of 0.94.

7. Discussion

From Fig. 2, we can see that the rich phenotype description strongly impacted LLM-derived
CP performance for most phenotypes. This is expected, particularly for the heuristic phe-
notypes, as providing a precise specification in the prompt narrows the complexity of the
task for the LLM. If the LLMs could perform well using the much simpler prompt, this
would be a much more scalable and generalizable approach. Notably, gpt-4o appeared
to perform much better than other LLMs using simple prompts, particularly using the it-
erative strategy and/or with an expert-curated feature set. In fact, from Table 4 we see
that the best average performance of gpt-4o+SEDI with simple prompts outperformed its
counterpart with rich prompts.

While the rich prompts contain the natural language definitions of the heuristics, they
do not provide explicit code. As a result, the LLM is not always able to perfectly replicate
the heuristic phenotypes as executable programs. At the same time, it reflects a real-world
scenario in which no expert-driven feature selection is performed.
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The SEDI strategy appeared to improve CP performance for many of the underper-
forming LLM-generated CPs. For the most complicated outcome, aTRH by chart review,
SEDI appeared to improve all gpt-4o-mini CPs and both gpt-4o CPs provided with only
the simple phenotype description. In fact, for the most minimal prompt designs (i.e., sim-
ple prompts using all features), SEDI appeared to improve CP performance for gpt-4o

and gpt-4o-mini across all phenotypes, and in cases where it did not, it caused no harm.
However, for several of the outcomes, these SEDI-associated improvements did not yield
equivalent performance to that of using the richer prompts. We expect future improve-
ments to the SEDI process will lead to further improvements. It is also worth noting that
gpt-3.5-turbo only showed substantial improvements with SEDI for the HTN-HypoK and
aTRH heuristics.

Across experiments, the impact of providing an expert-curated feature set was inconsis-
tent, when a rich prompt is presented to the model. For gpt-4o and the simple phenotype
descriptions, it appeared overall associated with improved model performance. However,
there were situations in which it appeared associated with worse performance, including for
gpt-3.5-turbo and HTN-HypoK. The set of expert features had the greatest impact on
gpt-4o-mini with simple prompts, suggesting that a smaller search space can compensate
for the lack of a detailed phenotype description.

Additionally, the full feature set — comprising more than 300 features — expands the
search space and often includes features with overlapping semantics. Using expert features
appears to help by narrowing the search space and reducing prompt length. However, this
is not a general rule, as competitive performance is still observed with the full feature set in
several cases. This suggests that while curated features can reduce complexity, the method
remains effective even when such features are not available. Model capability also plays
a significant role — for example, gpt-3.5 consistently underperforms compared to gpt-4

variants.
Anecdotally, we observe that LLMs sometime tried to “cheat” on the task by, e.g., cre-

ating random weights, or importing external libraries to fit a classifier, despite not having
access to labels. However, the occurrence of these programs is drastically reduced when
using SEDI strategy. In fact, when using SEDI, we observe that LLMs will, in some in-
stances, create and refine a list of weights for the features, but without SEDI occasionally
will generate weights as weights=np.random.rand(len(features)). Occurrences of pro-
grams with random weights or shortcuts are more common with zero-shot strategies for
gpt-3.5-turbo and gpt-4o-mini.

From Fig. 3 we observe that ML-based strategies (except DT) tend to outperform LLM-
based strategies on average. However, the performance differences between the best LLM
models (gpt-4o+SEDI) and FEAT are typically small and gpt-4o+SEDI was superior for the
HTN-hypoK heuristic. Notably, gpt-4o+SEDI underperforms on the simplest tasks (HTN
Heuristic/Dx) where other ML methods excel, but is competitive on the more complex
HTN-HypoK heuristic. The benefits of the SEDI strategy were apparent for gpt-4o-mini

across both HTN and aTRH phenotypes and for gpt-4o for the HTN heuristic.
In Fig. 3 we see that gpt-4o+SEDI outperforms the other LLM variants, although their

performance is close, with overlapping confidence intervals. gpt-4o+SEDI performance falls
between the simplicity of the DT model and the complexity of the RF model, demonstrating
a good balance between AUPRC and model size.
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Even though gpt-4o+SEDI is outperformed by FEAT in individual trials, selecting the
LLM final model from across the cross-validation experiment yields a final LLM model with
performance comparable to that of the FEAT model, as reported in Table 4. If we consider
model size as a proxy for interpretability, we see that gpt-4o+SEDI achieves better results
than the black-box model generated by RF, whose ensemble exceeds five thousand nodes.
In classification metrics, it achieves an AUPRC of 0.85, falling short of the best-performing
method, RF, which reaches 0.90. However, compared to the traditional RF approach, our
proposed SEDI method combined with the most recent LLM offers a better balance between
performance and interpretability.

We also note from Table 4 that the zero-shot strategy without a rich prompt and expert
features generates a larger model than that with SEDI, yet with decreased performance.
When using a rich prompt and expert features, it generated an oversimplified model that
likewise failed to achieve competitive performance. This indicates that SEDI may play
an important in refining models to improve size and performance. The final CP for the
gpt-4o using the zero-shot strategy has low variability, likely due to confidence intervals
being computed by bootstrapping performance of a single selected program on a held-out
test set.

The final CP model found by gpt-4o+SEDI, depicted in Fig. 4, reveals a concise set of
intuitive, interpretable rules. We argue that interpretability comes mainly from the fact
that the program can be inspected, and all instructions are clear enough to be used in
clinical practice.

Taking as an example the final CP model generated by gpt-4o+SEDI, the program clearly
assigns cumulative probabilities based on observed conditions. The program begins by
checking for high blood pressure in patients prescribed three hypertension medications and
correspondingly increases the cumulative probability for aTRH. The program then contin-
ues to adjust the probability by interrogating other features more deeply and incorporating
additional information. After calculating the final cumulative probability, it compensates
for potential false negatives by reducing the probability based on number of potassium sup-
plement prescriptions (Med Potassium N) and hypokalemia diagnoses (Dx HypoK N), which
likely relates to bias in the subject sampling in the training set.

Overall, this final CP is interpretable, intuitively represents predictor interactions, and
achieves competitive performance. Moreover, we demonstrated that supervised parameter
optimization has the potential to considerably improve the performance of the LLM-trained
models by tuning the parameters of the model, which are close to the actual parameters
the LLM generated (represented as comments in the code).

We assess potential biases in the final model generated by gpt-4o+SEDI by evaluating
its performance on each subpopulation defined by gender and race. The final model does
not incorporate race or gender, but it shows worse AUPRC performance in Black women
and white women. A detailed analysis is presented in Appendix H.

Limitations We note several limitations. First, we focused exclusively on hypertension
and subphenotypes thereof; it is possible that different methods or settings would excel
when applied to different phenotypes. Second, we did not evaluate the performance of
other, potentially more advanced LLMs like gpt-o1, Claude or llama. Third, there may be
variations of the SEDI strategy that would provide more effective feedback to the LLMs;
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a full experimental study of these many options is beyond the current scope of this pa-
per. The generated models are not calibrated to mitigate bias across subpopulations, which
could potentially be addressed by incorporating fairness objectives in the prompts. Fi-
nally, our experiment is confined to a limited set of patients from a single (albeit large,
multi-site) health system, partially due to the intensive nature of chart review. Because of
this we cannot rule-out differences in the performance of these CPs across distinct patient
populations.

8. Conclusions and Future Work

State-of-the-art LLMs generate reasonably accurate and concise CPs for hypertension phe-
notypes, even when a simple prompt is presented. When given detailed and focused prompts
and equipped with data-driven, iterative feedback (i.e., SEDI), LLM-generated CPs are
competitive with those trained using supervised ML. We observe in general that tradi-
tional supervised ML approaches leveraging chart-reviewed examples still outperform LLM-
derived CPs, but yield models that are much larger and require access to a much larger set
of expert-labeled data.

We have also established the potential for LLMs to iteratively learn CPs expressed as
intelligible Python code.

Our work presented a novel approach for using LLMs to generate CPs automatically,
aiming to reduce manual feature engineering and leaning towards scalable solutions. We
have made our SEDI framework publicly available so that it can be readily adapted to
developing CPs for other conditions (e.g., diabetes complications), given a small set of
training examples.

Future work could extend the SEDI-based LLM approach used here, consider an ex-
panded set of phenotyping tasks, or look at the performance of an iterative computable
phenotyping system in prospective clinical settings.

Data and Code Availability Study data was extracted from the University of Pennsyl-
vania Healthcare System (UPHS) electronic health record and cannot be shared publicly to
protect the privacy of the subjects. However, it can be shared upon request and subject to
relevant approvals. All our methods, experiments, and post-processing analysis are publicly
available at https://github.com/cavalab/htn-phenotyping-with-llms.
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Programming with Large Language Models. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1146–1155, Lisbon Portugal, July 2023.
ACM. ISBN 9798400701191. doi: 10.1145/3583131.3590481.

Josh Magnus Ludan, Qing Lyu, Yue Yang, Liam Dugan, Mark Yatskar, and Chris Callison-
Burch. Interpretable-by-design text understanding with iteratively generated concept
bottleneck, 2024. URL https://arxiv.org/abs/2310.19660.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 4768–4777, Red Hook, NY, USA, 2017. Curran Associates Inc.
ISBN 9781510860964.

Paul Milliez, Xavier Girerd, Pierre-François Plouin, Jacques Blacher, Michel E. Safar, and
Jean-Jacques Mourad. Evidence for an increased rate of cardiovascular events in pa-
tients with primary aldosteronism. Journal of the American College of Cardiology,
45(8):1243–1248, April 2005. ISSN 07351097. doi: 10.1016/j.jacc.2005.01.015. URL
https://linkinghub.elsevier.com/retrieve/pii/S0735109705002184.

Huan Mo, William K Thompson, Luke V Rasmussen, Jennifer A Pacheco, Guoqian Jiang,
Richard Kiefer, Qian Zhu, Jie Xu, Enid Montague, David S Carrell, Todd Lingren,
Frank D Mentch, Yizhao Ni, Firas H Wehbe, Peggy L Peissig, Gerard Tromp, Eric B
Larson, Christopher G Chute, Jyotishman Pathak, Joshua C Denny, Peter Speltz, Abel N
Kho, Gail P Jarvik, Cosmin A Bejan, Marc S Williams, Kenneth Borthwick, Terrie E
Kitchner, Dan M Roden, and Paul A Harris. Desiderata for computable representa-
tions of electronic health records-driven phenotype algorithms. Journal of the American
Medical Informatics Association, 22(6):1220–1230, November 2015. ISSN 1067-5027. doi:
10.1093/jamia/ocv112.

Lincoln Murr, Morgan Grainger, and David Gao. Testing llms on code generation with
varying levels of prompt specificity. arXiv preprint arXiv:2311.07599, 2023.

Andrew NG et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

OpenAI. Chatgpt, 2024. URL https://chatgpt.com/. Accessed: 2025-02-05.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language

20

https://linkinghub.elsevier.com/retrieve/pii/S0021915011011336
https://linkinghub.elsevier.com/retrieve/pii/S0021915011011336
https://arxiv.org/abs/2310.19660
https://linkinghub.elsevier.com/retrieve/pii/S0735109705002184
https://chatgpt.com/


models to follow instructions with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Jesse E Passman, Jasmine Hwang, Justin Tang, Madeline Fagen, Mika Epps, MaryAnne
Peifer, John T Howell, Jordana B Cohen, M Kit Delgado, Heather Wachtel, and Daniel S
Herman. Active Choice Nudge to Increase Screening for Primary Aldosteronism in
At-Risk Patients. Journal of the American College of Surgeons, 240(1):46–59, Jan-
uary 2025. ISSN 1072-7515, 1879-1190. doi: 10.1097/XCS.0000000000001221. URL
https://journals.lww.com/10.1097/XCS.0000000000001221.

Inioluwa Deborah Raji, Roxana Daneshjou, and Emily Alsentzer. It’s Time to Bench the
Medical Exam Benchmark. NEJM AI, 2(2):AIe2401235, January 2025. doi: 10.1056/
AIe2401235.

J. Rapin and O. Teytaud. Nevergrad - A gradient-free optimization platform. https:

//GitHub.com/FacebookResearch/Nevergrad, 2018.

Shauli Ravfogel, Yoav Goldberg, and Jacob Goldberger. Conformal nucleus sampling. arXiv
preprint arXiv:2305.02633, 2023.

Martin Reincke, Evelyn Fischer, Sabine Gerum, Katrin Merkle, Sebastian Schulz, Anna
Pallauf, Marcus Quinkler, Gregor Hanslik, Katharina Lang, Stefanie Hahner, Bruno
Allolio, Christa Meisinger, Rolf Holle, Felix Beuschlein, Martin Bidlingmaier, and
Stephan Endres. Observational Study Mortality in Treated Primary Aldosteronism:
The German Conn’s Registry. Hypertension, 60(3):618–624, September 2012. ISSN
0194-911X, 1524-4563. doi: 10.1161/HYPERTENSIONAHA.112.197111. URL https:

//www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.112.197111.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1(5):
206–215, May 2019. ISSN 2522-5839. doi: 10.1038/s42256-019-0048-x. URL http:

//dx.doi.org/10.1038/s42256-019-0048-x.

Chandan Singh, Jeevana Priya Inala, Michel Galley, Rich Caruana, and Jianfeng Gao.
Rethinking interpretability in the era of large language models. arXiv preprint
arXiv:2402.01761, 2024.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei, Hyung Won Chung,
Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, Perry Payne, Martin
Seneviratne, Paul Gamble, Chris Kelly, Abubakr Babiker, Nathanael Schärli, Aakanksha
Chowdhery, Philip Mansfield, Dina Demner-Fushman, Blaise Agüera y Arcas, Dale Web-
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Appendix A. Prompts for the SEDI strategy

In this section, we provide a detailed description of the prompts used in the synthesize-
execute-debug-inspect (SEDI) strategy.

The iteration begins with the same message for both SEDI and the zero-shot strategy,
which includes a description of the phenotype and the available features. Then, after
receiving the response from the LLM, we parse it to extract the generated program and
evaluate it for execution errors.

If execution errors occur, the following message is used as a prompt:

Debug prompt Python encountered an error when trying to execute the function. Error
Message: <error traceback as formatted text>. Please try again. **MAKE ABSOLUTELY
SURE TO RETURN A SYNTACTICALLY VALID PYTHON FUNCTION.

If the program executes without errors, we evaluate its performance by checking for
false positives and false negatives. For each case, we randomly select up to 10 examples
from the training data and format them as input dictionaries. Notice that, in the worst
case scenario, the model will see only 20 training samples each iteration, meaning that the
training uses less data than a supervised ML method.

The updated instruction prompt consists of three components: the performance report
message, the false positive examples (if applicable), and the false negative examples (if
applicable). The second and third components are used only if there is any false positive
or negative case, otherwise the model does not receive specific examples. During the first
iteration, no improvement message is provided to the LLM. After the first iteration, the
performance report message includes either a reinforcement message if the changes improve
the model or a negative message otherwise.

Performance report message We evaluated the prediction function you provided on a
set of < training dataset size> patients. <reinforcement message, if applicable>. Using the
performance feedback below, please refine the Python function.
# Overall Performance
Area Under the Receiver-Operating Curve (AUROC): <AUROC, with 3 decimal places>
Area under the precision-recall curve (AUPRC): <AUPCR, with 3 decimal places>
The False Positive Rate is <FP rate, as percentage>
The False Negative Rate is <FN rate, as percentage>

False positive examples # Analysis of False Positives
Please refine the function so that the <number of false positives> False Positives have lower
predicted probabilities
Below you will find <number of FP examples> example patients with false positive assess-
ments to assist you in prescribing changes to the predict hypertension function:
<List containing the FP examples, formatted as dictionaries>

False negative examples # Analysis of False Negatives
Please refine the function so that the <number of false negatives> False Negatives have
higher predicted probabilities
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Below you will find <number of FN examples> example patients with false negative assess-
ments to assist you in prescribing changes to the predict hypertension function:
<List containing the FN examples, formatted as dictionaries>

Finally, the prompt concludes with a summary message that reiterates the task descrip-
tion.

Summary # Summary of Request
Please create an updated Python function named ‘predict hypertension‘ that achieves fewer
false positives and fewer false negatives than the one you previously provided.
The function should assess whether each patient (represented as rows) has evidence of
<phenotype>.
As before, the function takes a pandas DataFrame named ‘df‘ as input.
Recall that the available columns and their meanings are provided as key value pairs in a
dictionary previously provided.
As before, you may only use the features whose names appear in this dictionary.
As before, your response must contain only a Python function, with no comments or expla-
nations, that strictly follows the given description.

Appendix B. Feature construction

As previously described, 331 features were extracted from the EHR. Demographic and
encounter features included age, race, sex, binned distance from zip code 19104, weight,
BMI, blood pressure, and the number of encounters with elevated blood pressure (sys-
tolic/diastolic BP >= 140/90 mmHg). Longitudinal features were aggregated as minimum,
maximum, median, standard deviation, and skewness.

The 34 most common ambulatory laboratory test results (i.e., complete metabolic panel,
complete blood count with differential, lipids, thyroid stimulating hormone, and hemoglobin
A1c) with missingness in fewer than one-third of subjects were summarized as minimum,
maximum, median, 1st quartile, and 3rd quartile. Diagnosis codes for hypertension, associ-
ated comorbidities, and other indications for anti-hypertensive medications were aggregated
and summarized as median per year and sum. Medication prescriptions were summarized as
both the number of days prescribed for each antihypertensive class and the count of encoun-
ters while prescribed 1, 2, 3, or 4 or more anti-hypertensive medications, described as sum,
median, standard deviation, and skewness, as well as the sum of encounters with elevated
blood pressure. Regular expressions were applied to clinical notes to identify mentions of
‘hypertension’ and variants thereof, summarized as counts.

Features with values outside of physiologically reasonable ranges, with fewer than 5%
non-zero counts, or with variance < 0.05 were excluded. Missing values were median im-
puted.

In the original paper from which the data were extracted (La Cava et al., 2019), the
diagnoses were manually ascertained through chart review. A study physician (a MD grad-
uate with experience as a medical officer) reviewed clinical charts and classified subjects
according to three phenotypes. Classification was based on the JNC7 Guidelines on Pre-
vention, Detection, Evaluation, and Treatment of High Blood Pressure (Chobanian et al.,
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2003). The heuristics were proposed by expert clinicians and iteratively refined using the
training data to assess how many cases were labeled as true positives. Unclear cases were
reviewed by one additional study physician. The chart review was documented in a single
Redcap form, with the reviewer’s conclusion and the underlying evidence.

Table 5 summarizes all features present in the dataset. All features can be considered
potential risk factors for different hypertension phenotypes. Some features represent de-
scriptive statistics of lab tests, with a suffix indicating the corresponding statistic. When
multiple statistics are available, they are separated by a forward slash in the feature name.

Appendix C. ML hyper-parameters

Table 6 presents the machine learning methods compared in the second set of experiments.
The hyperparameters for each method were optimized using a gridsearch with a stratified 5-
fold cross-validation. For each method, the table lists the possible values considered during
the gridsearch process to identify the optimal configuration.

Appendix D. Boxplot visualization for the settings study

Fig. 6 reports the same data from the settings study (Figure 2), using boxplots instead
of barplots. While the barplot provides a cleaner view of average performance, making it
easier to compare two methods, the boxplot gives us distribution estimates.
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Figure 6: Average AUPRC on each held-out fold of different LLM-generated CPs, com-
pared to other interpretable machine learning methods. LLMs results are shown using rich
prompts and expert features, with and without SEDI training.

Appendix E. AUPRC comparison for aTRH

Fig. 7 reports a comparison of LLM-generated CPs held-out validation performance in
5-fold cross-validation, comparing the LLMs to conventional interpretable ML methods
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Table 5: All features in the dataset. Features with multiple variations (indicated by words
separated by a forward slash) mean that all options exist as features

Group Feature Feature Description

Demo

Age Patient’s age at right-censoring date

Sex Patient’s documented Sex (1 = male, 0 = female)

Race (Black) 1 = black, 0 = non-black

Race (Other)

1 = Asian, other, mixed, Native American,

Pacific Islander,

0 = black or white

Race (White) 1 = white, 0 = non-white

ZIP CAT Distance from patient’s home to 19104, binned

Encounter
Practice Site

Code for healthcare site (not one-hot encoded),

common service for all source systems.

Practice type 1 = internal medicine practice, 0 = family medicine
practice

BMI/Weight
weight {statistic} Min/max/median/sd/skewness of weights

bmi {statistic} Min/max/median/sd/skewness of BMI

BP

bp n Total number of blood pressure (BP) measurements

{statistic} systolic/diastolic Max/mean/median/sd/skew of systolic/diastolic
BP measured

high bp n Number of high blood pressure cases (SBP >= 140
or DBP >= 90)

{statistic} high bp systolic/diastolic

Mean/median/sd/skew of systolic/diastolic BP of

all high blood pressure measurements

(SBP >=140 or DBP >= 90)

{statistic} high bp n yr
Median/sd/skew of systolic/diastolic BP

for high blood pressure measurements

Labs Dx

{statistic}.lab XXX Maximum/minimum/median/q1/q3 of XXX lab
test

{statistic} ICD XXX (Dx) Median/sum XXX ICD-9 and ICD-10 codes, by
year

{statistic} XXX (disease name) Median/sum XXX disease name, by year

Dx N Number of total ICD-9 and ICD-10 codes
(PX DX ID)

enc N Number of OUTPATIENT (including INFUSION
VISIT) encounters

dx days x Days from 1st Dx to last Dx in system

Medication

HTN MED days XXX Days on med XXX (including anti-HTN and Potas-
sium Supplement)

MED N Number of medication prescriptions total

high bp during htn meds {meds} Number of high BP measurements during 1/2/3/4+
anti-HTN meds

{statistic} enc during htn meds {meds} Number of OUTPATIENT encounters during
1/2/3/4+ meds

Continued on next page

DT and LR L1, a representative non-interpretable ML method RF, and a representative
symbolic regression method FEAT. We observe that the SEDI approach appeared associated
higher performance for some LLM, phenotype combinations, particularly for gpt-4o-mini
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Table 5: All features in the dataset. Features with multiple variations (indicated by words
separated by a forward slash) mean that all options exist as features (Continued)

Group Feature Feature Description

Medication

N med k chlo enc
Number of encounters on

POTASSIUM CHLORIDE/POTASSIUM GLUCONATE

sd med k chlo enc
Standard deviation of number (by year) of encounters on

POTASSIUM CHLORIDE/POTASSIUM GLUCONATE

skewness med k chlo enc
Skewness of number (by year) of encounters on

POTASSIUM CHLORIDE/POTASSIUM GLUCONATE

Heuristic
Features

low K N Number of low potassium test results

test K N Number of potassium test results

Med Potassium N Number of potassium supplement medication subscriptions

Dx HypoK N Number of Hypokalemia Dx

HTN Score
Features

ICD hyp sum HTN ICD codes

Med HTN N Anti-HTN meds prescriptions

bp hyp norm high bp n/bp n

icd hyp sum norm ICD hyp sum/Dx N

MED HTN N norm MED HTN N/MED N

re hyp spec norm re hyp spec/words n

Regex

re htn {statistic} Sum/max/mean/median/sd/skewness of regex counts in clinical

notes for hypertension

re htn spec {statistic} Sum/max/mean/median/sd/skewness of regex counts in clinical

notes for hypertension (specific, excluding preliminary negations)

re htn teixeira {statistic} Sum/max/mean/median/sd/skewness of regex counts in clinical

notes for hypertension (regex used in Teixeira paper)

re word count {statistic} Sum word counts in clinical notes

for the more complicated aTRH phenotypes. The average performance of CPs generated by
gpt-4o for HTN-HypoK heuristic outperformed FEAT, however in all other cases the LLM-
generated CPs showed slightly worse average performance. In despite of that, particular
runs generated good performing CPs.

Appendix F. Using optimizers to fine-tune the final model

We performed supervised parameter optimization on the final gpt-4o+SEDI model using a
black-box optimizer nevergrad (Rapin and Teytaud, 2018). The optimizer aimed to maxi-
mize AUPRC by exploring different combinations of hyperparameters in the training data.
The approach was implemented by manually adjusting the python function to include all
numeric parameters as arguments and then using an gradient-free, adaptative optimization
algorithm, to iteratively evaluate different combinations of values. The process can be ap-
plied to our generated methods as it does not rely on prior knowledge of the model’s internal
structure, but we also notice that it has limitations depending on the initial starting point.

In this proof-of-concept, we demonstrate that LLM-constructed models can be consid-
erably refined by leveraging available outcome data, searching for sub-optimal parameter
configurations that further improves the performance of our generated method. The down-
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Table 6: Machine learning methods compared in the second set of experiments, with hyper-
parameters optimized via gridsearch in a stratified 5-fold cross-validation. Each list repre-
sents the possible values set to optimize using gridsearch.

Method Parameter

Decision Tree (DT)

max features = [‘auto’, ‘sqrt’]
max depth = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110]
min samples split = [2, 5, 10]
min samples leaf = [1, 2, 4]

Logistic Regression
with L1 norm (LR L1)

Cs = [1.e-06, 1.e-05, 1.e-04, 1.e-03,
1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03]
penalty=[‘l1’]
solver = [‘liblinear’]

Random Forests (RF)
n estimators = [100, 500, 900, 1300, 1700, 2100]
max features = [‘auto’, ‘sqrt’]
max depth = [10, 30, 50, 70, 90, 110]

Feature Engineering
Automation Tool (FEAT)

max depth=[6]
max dim = [10]
objectives= [[“fitness”,“size”]]
sel=[‘lexicase’]
gens = [200]
pop size = [1000]
stagewise xo = [True]
scorer=[‘log’]
ml=[‘LR’]
fb=[0.5]
classification=[True]
functions= [“split”,“and”,“or”,“not”,“b2f”]
split=[0.8]
normalize=[False]
corr delete mutate=[True],
simplify=[0.005]

side of this approach is that it requires a lot of outcome data in order to perform a parameter
optimization of the generated program in a supervised learning fashion.

Appendix G. Dialog for generating the final aTRH model

Figure 8 displays the first three generated programs before the final aTRH model was
obtained by gpt-4o+SEDI strategy. Unlike the reported model in Section 6, the outputs
here have not been processed for clarity. We show the first three programs just for illustrative
purposes.

The Initial model was evaluated and achieved an AUPRC of 0.54, AUROC of 0.91,
a FP rate of 8.0% and FN rate of 9.8%. The feedback prompt provided 10 FP and FN
examples.

The LLM then presented the Model after first iteration of SEDI, which included
more features and if-else statements, but kept the core instructions from the previous model.
The metrics changed to 0.56 AUPRC, 0.91 AUROC, 1.1% FP, and 84.1% FN. We can see
that the LLM performed some adjustments, improving some metrics but presenting an
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Figure 7: Average AUPRC cross-validation of different LLM-generated CPs, compared to
other interpretable machine learning methods from La Cava et al. (2023). LLMs results
are shown using rich prompts and expert features, with and without SEDI training. Error
bars depict the 95% confidence interval across different seeds. In addition to the bars, the
performance of each run is depicted as a dot overlaying the bars. Statistical comparisons are
conducted using Mann-Whitney-Wilcoxon two-sided test with Holm-Bonferroni corrections.
*: 1.00e-02 < p ≤ 5.00e-02; **: 1.00e-03 < p ≤ 1.00e-02 ***: 1.00e-04 < p ≤ 1.00e-03 ****:
p ≤ 1.00e-04. Appendix D has a boxplot visualization of the same data.

extremely high FN rate. The prompt states to create a new model that achieves fewer false
positive and fewer false negatives.

The next output updated the model with a new set of conditionals, reported as Model

after second iteration of SEDI, while still keeping the core of the previous programs.
It was evaluated to 0.60 AUPRC, 0.93 AUROC, 4.2% FP, and 40.2% FN.

Appendix H. Performance across different subgroups

We assess potential biases in the final model generated by gpt-4o+SEDI by evaluating its
performance across different subgroups within the test dataset. We considered bias relative
to subject’s documented gender and race. These variables were selected because they are
commonly studied in fairness assessments in machine learning models.

To evaluate bias, we report how the final model performs on each subpopulation defined
by gender and race, reporting classification metrics for each subpopulation and comparing
them to the overall performance of the model. This allows us to determine if the model ex-
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hibits disproportionate error rates or other disparities across different demographic groups.
Table 7 reports the metrics for the intersecting subpopulations when using the final model
generated by the gpt-4o+SEDI strategy, using the rich prompt and expert features set,
evaluated for aTRH diagnosis. Table 8 reports case counts and sample counts.

Table 7: Average AUPRC and AUROC on the held-out test partition on each subpopula-
tion, with race and gender as the distinguishing variables, evaluated for aTRH diagnosis.

Race Gender AUPRC AUROC

Black
Female 0.822 0.929
Male 0.862 0.917

White
Female 0.824 0.966
Male 0.903 0.981

Other
Female 0.456 0.965
Male 0.329 0.823

We see differences in AUPRC and AUROC across race and gender. The model’s dis-
criminative performance appears highest for White men and lowest for Black women and
white women. Other ethnic groups shows a low AUPRC, and prevalence is also low for
these subgroups.

Table 8: Case counts and sample counts for each subpopulation, with race and gender as
the distinguishing variables, evaluated for aTRH diagnosis.

Race Gender # Cases # Samples Prevalence

Black
Female 26 70 0.37
Male 13 37 0.35

White
Female 17 97 0.17
Male 15 69 0.21

Other
Female 1 16 0.06
Male 1 11 0.09

There are several explanations for this apparent bias. LLMs are known to recapitulate
biases from their training corpuses. However, for this application a likely explanation is bias
in training and testing data. While the final model does not directly incorporate race or
gender, there are associations between these factors and incorporated features. As shown
in Tables 7 and 8, Black patients are more likely to be documented as having apparent
treatment-resistent hypertension. Differences in AUPRC measures are explained in part by
the sensitivity of this metric to differences in case prevalence. Some of the differences in
AUROC are also due to have single case counts/few patients within subgroups (e.g., the
‘Other’ category). In addition, there are many differences in how women and men interact
with the healthcare system, which were not considered in the upstream feature engineering.
These findings warrant follow-up to compare for bias in the ML methods and to mitigate
bias in the LLM-based approach. Approaches for mitigating bias could include accounting
for subject factors when samping for FP and FN subjects in the SEDI approach.
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In addition, prompts could use classification metrics evaluated across subpopulations
and ask the LLM to explicitly consider mitigating bias.
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Iterative program refinement using the SEDI strategy

# Initial model

def predict_hypertension(df: pd.DataFrame) -> np.ndarray:

probabilities = []

for _, row in df.iterrows ():

if row[’high_BP_during_htn_meds_3 ’] >= 2 or row[’

←↩sum_enc_during_htn_meds_4_plus ’] >= 2:

probabilities.append (1.0)

else:

probabilities.append (0.0)

return np.array(probabilities)

# Model after first iteration of SEDI

def predict_hypertension(df: pd.DataFrame) -> np.ndarray:

probabilities = []

for _, row in df.iterrows ():

prob = 0.0

if row[’high_BP_during_htn_meds_3 ’] >= 2:

prob += 0.5

if row[’sum_enc_during_htn_meds_4_plus ’] >= 2:

prob += 0.5

if row[’high_BP_during_htn_meds_3 ’] >= 2 and row[’

←↩sum_enc_during_htn_meds_4_plus ’] >= 2:

prob = 1.0

if row[’mean_diastolic ’] < 75 or row[’Med_Potassium_N ’] == 0:

prob *= 0.5

probabilities.append(prob)

return np.array(probabilities)

# Model after second iteration of SEDI

def predict_hypertension(df: pd.DataFrame) -> np.ndarray:

probabilities = []

for _, row in df.iterrows ():

prob = 0.0

if row[’high_BP_during_htn_meds_3 ’] >= 2:

prob += 0.4

if row[’sum_enc_during_htn_meds_4_plus ’] >= 2:

prob += 0.4

if row[’mean_diastolic ’] > 80:

prob += 0.1

if row[’mean_systolic ’] > 140:

prob += 0.1

if row[’high_BP_during_htn_meds_2 ’] > 5:

prob += 0.1

prob = min(1.0, prob)

if row[’Med_Potassium_N ’] > 0 and row[’Dx_HypoK_N ’] > 0:

prob *= 0.5

probabilities.append(prob)

return np.array(probabilities)

Figure 8: Initial programs generated by GPT-4o with the SEDI strategy.
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